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Abstract

We study an integro-differential equation which generalizes the periodic
intermediate long wave (ILW) equation. The kernel of the singular integral
involved is an elliptic function written as a second-order difference of the
Weierstrass ζ -function. Using Sato’s formulation, we show the integrability
and construct some special solutions. An elliptic solution is also obtained.
We present a conjecture based on a Poisson structure that gives an alternative
description of this integrable hierarchy. We note that this Poisson algebra
in turn is related to a quantum algebra related to the family of Macdonald
difference operators.

PACS numbers: 94.05.Fg, 02.03.Ik

1. Introduction

In this paper, we consider an integrable differential equation with a singular integral term
associated with a doubly periodic function. We often classify the known integrable equations
with singular integrals according to the periodicity of the kernel functions. Namely, the
Benjamin–Ono equation [1, 2] corresponds to the case with no period (rational function)
because it has the Hilbert transformation, and the intermediate long wave (ILW) equation [3, 4]
corresponds to the singly periodic case (trigonometric function) as hyperbolic cotangent is
involved as the kernel. The doubly periodic case was introduced in [5] as a periodic version
of the ILW equation.

We aim at constructing an integrable equation which recovers all these equations as special
limits, and which also relates to the theory of the Macdonald polynomials [6] (see [7, 8] also).
We propose that the kernel of our singular integral is an elliptic function having simple poles
at three points γ, 0,−γ in the fundamental parallelogram with residues 1,−2, 1 respectively
and holomorphic elsewhere.
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Let ω1, ω2 and γ be complex numbers such that the ratio δ = ω2/ω1 satisfies Im(δ) > 0,
and 0 < Im(γ ) < Im(δ). Let x and t be real independent variables, and let η(x, t) be an
analytic function satisfying the periodicity condition η(x + 1, t) = η(x, t). We consider the
integro-differential equation

∂

∂t
η(x, t) = η(x, t) · iω1

π

∫ 1/2

−1/2
\ (	γ ζ )(2ω1(y − x)) · η(y, t) dy, (1)

where ζ(x) = ζ(x; 2ω1, 2ω2) denotes the Weierstrass ζ -function [9] (see (A.1) in the
appendix), the discrete Laplacian 	γ is defined by (	γ f )(x) = f (x −γ )−2f (x)+f (x +γ ),
and the integral

∫\ means the Cauchy principal value.
Our purpose in this paper is to study (1) from several viewpoints. First we use the standard

method which transforms (1) into a difference-differential form [5, 10–12]. Then we follow
the method developed in [13, 14] to utilize the Sato theory to construct an integrable hierarchy
which includes (1). Then we study the system of integrals of motion associated with (1) in
terms of the Sato theory.

We remark the following. In [10, 12], the conserved densities for the (periodic) ILW
were studied by using the Bäcklund transformation. However, we do not know a Bäcklund
transformation for (1) at present. It is an open question to find it and compare the approach
given in this paper with those classical analyses of conserved quantities.

In the papers [15, 16], a Hamiltonian approach to the ILW equation was pushed forward
by using the Gel’fand–Dikij brackets and the bi-Hamiltonian structure. We will develop a
Hamiltonian description of (1) in the same spirit as theirs. Our situation, however, might
be a little tangled in the following sense. On one hand, it has a direct connection with
the Macdonald difference operators [6], or to be more precise, to its elliptic analogue defined
through the algebra of Feigin and Odesskii [17] (see [7, 8]). On the other hand, we also attempt
to connect the Hamiltonian approach with the Lax formulation of Sato. It is a future problem
to understand analogues of the Gel’fand–Dikij brackets and the bi-Hamiltonian structure
for (1).

Finally, we make an important comment that the Poisson algebra in this paper has a deep
connection with the one found in [18]. The difference analogue of Nth KdV studied by Frenkel
has two parameters q and N. It can be found that if we set q = e2π iγ and impose the condition
δ = Nγ , we almost recovers Frenkel’s Poisson algebra, but missing the delta function terms
which typically appear in the deformed W-algebras (see [19]).

This paper is organized as follows. In section 2, we rewrite (1) in a form of the differential-
difference equation. Then we show the ordinary ILW equation with periodicity can be obtained
from (1) in the limit γ → 0. In section 3, by using the standard Sato theory we present an
integrable hierarchy which contains (1) in the lowest order. We study the structure of the
integrals of motion in some detail in this setting. Finally, section 4 is devoted to an alternative
description based on a Poisson structure derived from a quantum-mechanical integrable model
associated with the Macdonald theory, from which we recover the same equation (1), and
presumably all the equations given in the hierarchy.

2. Differential-difference form

2.1. Integral operator T

Let T be the integral transformation defined by

(Tf )(x) = iω1

π

∫ 1/2

−1/2
\ (	γ ζ )(2ω1(y − x)) · f (y) dy, (2)

2
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then, (1) can be written as η̇ = η(Tη).
Decomposing η(x, t) by the Plemelj formalism [20], one obtains a differential-difference

equation and a bilinear equation from (1). Here and hereafter, we set p = e2π iδ, q = e2π iγ

for simplicity, and let D be a domain in the complex z-plane containing the infinite strip
0 � Im(z) � Im(δ).

Lemma 2.1. For any nonzero integer m we have

T(e2π imx) = (1 − qm)(1 − pmq−m)

1 − pm
e2π imx, (3)

and T(1) = 0.

Proof. Use (A.2) in the appendix. �

Corollary 2.2. Suppose that an analytic function f (z) on D satisfies the periodicity
f (x + 1) = f (x), then we have

T(f (x) − f (x + δ)) = f (x) − f (x + γ ) − f (x + δ − γ ) + f (x + δ). (4)

Define difference operators T and S acting on the variable x by Tf (x) = f (x+δ), Sf (x) =
f (x + γ ). For simplicity of display, we also write f̂ = Tf (x) = f (x + δ), f = Sf (x) =
f (x + γ ), f = S−1f (x) = f (x − γ ) and so on. Then we can write (4) as

T(f − f̂ ) = (1 − S)(1 − T S−1)f, (5)

for example. Setting g = (1 − T )f , this ‘formally’ can be expressed as

Tg = (1 − S)(1 − T S−1)

1 − T
g. (6)

Proposition 2.3. Suppose that w(z) is holomorphic on D and satisfies the periodicity
w(x + 1) = w(x). Set η(x) = w(x) − w(x + δ) + η0, where η0 = ∫ 1/2

−1/2 η(x) dx denotes
the zero Fourier component. Then we can recast (1) into the difference equation

∂

∂t
(w − ŵ + η0) = (w − ŵ + η0)(w − w − ŵ + ŵ). (7)

Remark 2.4. Note that we have dη0/dt = 0 from the assumption on w(x).

Proposition 2.5. Let ε and η0 be constants. Assume that τ satisfies the bilinear equation

Dt τ̂ · τ = ετ̂ τ − η0τ̂ τ, (8)

where Dt denotes the Hirota derivative defined by Dtf ·g = (∂tf )g−f (∂tg). Set w = −∂tτ

τ
.

Then w satisfies the difference equation (7).

Proof. From (8) we have

w − ŵ + η0 = −∂tτ

τ
+

∂t τ̂

τ̂
+ η0 = ε

τ̂ τ

τ̂ τ
,

hence

∂t log(w − ŵ + η0) = −∂tτ

τ
+

∂tτ

τ
+

∂t τ̂

τ̂
− ∂t τ̂

τ̂
= (w − w − ŵ + ŵ).

�
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2.2. Some special solutions

We give some examples of special solutions to (1), (7) or (8).

Proposition 2.6. Let n be a positive integer. Let c1, . . . , cn be n complex parameters, k1, . . . , kn

be n integers which are all distinct and nonzero. Set

τ = det(fl,m)1�l,m�n,

fl,m = λm−1
l + clμ

m−1
l exp(2π i klx + (μl − λl)t),

λl = −ε
1 − e2π i(δ−γ )kl

1 − e2π iδkl
, μl = −ε

1 − e−2π i(δ−γ )kl

1 − e−2π iδkl
.

(9)

Then this tau satisfies the bilinear equation (8) written for η0 = ε.

The proof of proposition 2.6 will be given in section 3.2.

Remark 2.7. We have

μl − λl = ε
(1 − e2π iγ kl)(1 − e2π i(δ−γ )kl)

1 − e2π iδkl
. (10)

Now we turn to the case of an elliptic solution. Let 	 be a complex number satisfying
Im(	) > 0 and define

ϑ1(u,	) = −i eπ i	/4+π iu
∑
m∈Z

(−1)m eπ i	m(m+1)+2π imu. (11)

Proposition 2.8. Let ε and 	 be complex parameters satisfying Im(	) > Im(δ), and let k be
a nonzero integer. Set

τ = ϑ1(kx + ω(k)t,	), (12)

ω(k) = −ε
ϑ1(kγ,	)ϑ1(k(δ − γ ),	)

ϑ ′
1(0,	)ϑ1(kδ,	)

(13)

and

η0 = ω(k)

(
ϑ ′

1(k(γ − δ),	)

ϑ1(k(γ − δ),	)
− ϑ ′

1(kγ,	)

ϑ1(kγ,	)

)
. (14)

Then τ satisfies (8) and

η = ε
τ̂ τ

τ̂ τ
(15)

is a special solution to the integro-differential equation (1).

It is straightforward to check this by using addition formulae, so we omit the proof.

Remark 2.9. Note that, 	 (not δ of the period of equation (1)) gives the period of the solution.

4
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2.3. Limit to periodic ILW

Now we consider the limit γ → 0, and derive the periodic ILW equatin studied in [5]. Let T
be the integral operator

(T f )(x) = iω1

π

∫ 1/2

−1/2
\ {ζ(2ω1(y − x)) − 2ζ(ω1)(y − x)} · f (y) dy, (16)

then we have

T (e2π imx) = −1

2

1 + pm

1 − pm
e2π imx (m �= 0), (17)

and T (1) = 0. Hence we have the formal expression

T g = −1

2

1 + T

1 − T
g. (18)

Lemma 2.10. We have the expansion of T in γ as

T = −γ ∂x + γ 2T ∂2 + O(γ 3). (19)

To have the periodic ILW equation, we need to cancel the leading term −γ ∂x . To
this end we first perform a Galilean transformation on η(x, t) and assume the expansion as
ect∂x η = ε + γ u(x, t) + O(γ 2), where c and ε are constants. Rescaling t as t → γ −2t and
setting c = εγ + aγ 2 + · · ·, we have the integro-differential equation of ILW-type for u

ut = aux − uux + εT (uxx). (20)

3. Lax formalism

3.1. Sato theory

We introduce an infinite set of independent variables x, r and t = (t1 = t, t2, t3, . . .).
Define difference operators S,R and T by Sf (x, r, t) = f (x + γ, r, t), Rf (x, r, t) =
f (x, r +δ, t), Tf (x, r, t) = f (x +δ, r, t). For simplicity, we write Sf = f , Rf = f̃ , Tf = f̂

and so on.
We formulate a version of Sato theory based on the papers [13, 14]. In what

follows, we work with a space of operators expressed as formal series in S−1. Let
W = 1 + w1S

−1 + w2S
−2 + · · · be the Sato–Wilson operator. Let φ(λ) and κ(λ) be Laurent

series in λ as

φ(λ) = λ +
∑
i�0

φi+1λ
−i , κ(λ) = λ +

∑
i�0

κi+1λ
−i , φi, κi ∈ C, (21)

and define ρ(λ) = φ−1(λ) by the condition

ρ(λ) = λ +
∑
i�0

ρi+1λ
−i , φ(ρ(λ)) = λ. (22)

We impose the following set of evolution equations on W :

∂W

∂tj
+ Wφ(S)j = BjW, Bj = (Wφ(S)jW−1)+, (23)

W̃κ(S) = CW, C = (W̃κ(S)W−1)+, (24)

where we have used the standard notation that we write (A)+ = ∑0
j=k ajS

−j for any
A = ∑∞

j=k ajS
−j .

5
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Remark 3.1. The equality (24) means the truncation of the operator W̃κ(S)W−1 =
(W̃κ(S)W−1)+, which involves an infinite system of equations about integrals of motion,
and is very much important for our task. Namely, κms play the role of integrals. On the other
hand, the parameters φms are introduced just to have some linear combination of the time
variables tis. See sections 3.3 and 3.4.

Example of the time evolution (23). We have

∂t1wk = wk(w1 − w1) − (wk+1 − wk+1) − φk+1 −
k−1∑
j=1

φj+1wk−j , (25)

etc.

Proposition 3.2. The compatibility among the evolutions in the t directions and the r directions
can be described by the Zakharov–Shabat equations

∂Bi

∂tj
− ∂Bj

∂ti
+ [Bi, Bj ] = 0, (26)

∂C

∂ti
+ CBi − B̃iC = 0. (27)

Introduce the wavefunction � defined by

�(x, r, t) = Wρ(λ)x/γ κ(λ)r/δ eξ(t,λ), (28)

ξ(t, λ) =
∞∑
i=1

tiλ
i . (29)

Proposition 3.3. The wavefunction � satisfies

∂�

∂ti
= Bi�, (30)

�̃ = C�. (31)

The operators B1 and C can be written explicitly as

B1 = S + w1 − w1 + φ1, C = S + w̃1 − w1 + κ1. (32)

Write w = w1 for simplicity, then from Zakharov–Shabat equation (27) we have

∂

∂t
(w̃ − w + κ1) + (w − w̃ − w + w̃)(w̃ − w + κ1) = 0. (33)

Definition 3.4. We call the condition on W

W(x, r + δ, t) = W(x + γ − δ, r, t), (34)

(W̃ = T −1SWT S−1 or ̂̃wk = wk) the reduction condition.

Proposition 3.5. Assume that W satisfies the reduction condition (34), and define the Lax
operator by L = T S−1C = WT S−1κ(S)W−1. Setting η0 = κ1, η = w − ŵ + η0, we have

6
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L = T + ηT S−1, and w satisfies the difference equation (7). Hence η satisfies (1) under the
condition that w is holomorphic on D and periodic w(x + 1) + w(x).

Proposition 3.6. Assuming the reduction condition (34), we have

∂�

∂ti
= Bi�, (35)

L� = ρ(λ)(δ−γ )/γ κ(λ)�. (36)

3.2. Casorati determinant

As an application of the Sato theory we have studied in the previous subsection, we construct
a special solution of (1) in terms of a Casorati determinant. In this subsection, we restrict
ourself to the simplest possible situation φ(λ) = ρ(λ) = λ and κ(λ) = λ + ε and assume the
truncation of the Sato–Wilson operator as

W = 1 + w1S
−1 + w2S

−2 + · · · + wnS
−n. (37)

We note that the case ε = 0 necessarily gives us the trivial situation η = 0. For simplicity we
sometimes denote Skf (x) = f (k)(x), etc.

Consider the linear system WSnf = 0. Let f1, f2, . . . , fn be the basis of the linear
system satisfying the dispersion relation

∂fi

∂tj
= Sjfi, (38)

Rfi = (S + ε)fi. (39)

As usual, we explicitly give the basis as

fj = exp

⎛⎝ x

γ
log λj +

r

δ
log(λj + ε) +

∑
k�1

λk
j tk

⎞⎠
+ cj exp

⎛⎝ x

γ
log μj +

r

δ
log(μj + ε) +

∑
k�1

μk
j tk

⎞⎠ , (40)

by introducing the set of parameters {λi, μi, ci |1 � i � n}.
Proposition 3.7. The operator W uniquely characterized by the linear system WSnfi

(i = 1, . . . , n) satisfies the evolution equations (23) and (24) written for φ(λ) = λ, ρ(λ) =
λ, κ(λ) = λ + ε.

For any sequence of integers α1, α2, . . . , αn, we denote the corresponding Casorati
determinant by the symbol |α1, α2, . . . , αn| = det

(
f

(αj )

i

)
1�i,j�n

. Setting τ = |n − 1, n −
2, . . . , 0|, wis are written as

wk = (−1)k|n, n − 1, . . . , ǩ, . . . , 0|/τ, (41)

where the symbol ǩ means that the letter k is eliminated. Introduce differential operators pk

by
∞∑

k=0

pky
k = exp

(
−

∞∑
m=1

1

m
∂tmym

)
. (42)

7
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Proposition 3.8. We have wk = (pkτ )/τ , namely
∞∑
i=0

wk(x, r, t)λ−i = τ(x, r, t − [λ−1])

τ (x, r, t)
, (43)

where we have used the standard notation [λ] = (λ/1, λ2/2, λ3/3, . . .).

Note that we especially have w1 = −(∂t1τ)/τ,wn = (−1)n(Sτ)/τ and wn+1 = wn+2 =
· · · = 0. Hence we have

B1 = S +
∂twn

wn

, C = S + ε
w̃n

wn

. (44)

Proposition 3.9. If the condition

λj + ε

μj + ε
= (λj/μj )

(γ−δ)/γ , (45)

is satisfied, the reduction condition (34) holds. Such a pair λj , μj is parametrized via kj as

λj = −ε
1 − e2π i(δ−γ )kj

1 − e2π iδkj
, μj = −ε

1 − e−2π i(δ−γ )kj

1 − e−2π iδkj
. (46)

Assuming the reduction condition (34) and setting L = W(T +εT S−1)W−1 = T +ηT S−1,
we have the representation of η which satisfies (1) in terms of τ in two ways as

η = −∂tτ

τ
+

∂t τ̂

τ̂
+ ε = ε

τ̂ τ

τ̂ τ
. (47)

This means that τ satisfies the bilinear equation (8). Thus we have the special solution
presented in proposition 2.6.

The wavefunction � associated with this solution reads

� = τ(x, r, t − [λ−1])

τ (x, r, t)
λx/γ (λ + ε)r/δ eξ(t,λ), (48)

which satisfies (under the condition (34))

L� = λ(δ−γ )/γ (λ + ε)�. (49)

3.3. Conservation laws

Throughout this subsection, we assume that the reduction condition (34) is satisfied. Introduce
the Fourier expansions

η(x) =
∑
n∈Z

η−n e2π inx, wk(x) =
∑
n∈Z

wk,−n e2π inx, (50)

ηn =
∫ 1/2

−1/2
dx η(x) e2π inx, wk,n =

∫ 1/2

−1/2
dx wk(x) e2π inx. (51)

Conjecture 3.10. Assume the evolution equation in the r-direction (24) and the reduction
condition (34). κks are given as certain degree k expressions in {ηn}. In other words, η(x)

satisfies infinitely many constraint conditions for given {κk}.
8
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Example.

κ1 = η0, (52)

κ2 =
∑
n�=0

pnq−n

1 − pn
ηnη−n, (53)

κ3 =
∑

m�=0,n�=0

pmq−m

1 − pm

pnq−n

1 − pn
ηmη−m+nη−n −

∑
n�=0

pnq−n

(1 − pn)2
η0ηnη−n, (54)

etc.
We present some explicit calculations to explain what is meant by conjecture 3.10.

Lemma 3.11. It follows from L = T + ηT S−1 = WT S−1κ(S)W−1 that

ηŵk−1 = wk − ŵk +
k−1∑
j=0

κj+1wk−j−1. (55)

First we consider the case k = 1 in (55), namely η = w1 − ŵ1 + κ1. From this we have
the relations among the Fourier modes of w1, η and κ1 as

w1,−n = 1

1 − pn
η−n (n �= 0), (56)

κ1 = η0, (57)

w1,0 is free. (58)

Second, by setting k = 2 (55) gives us ηŵ1 = w2 − ŵ2 + κ1w1 + κ2. Therefore we have

w2,−n = 1

1 − pn

⎛⎝∑
l �=0

plq−l

1 − pl
η−n+lη−l + η−nw1,0 − κ1

1

1 − pn
η−n

⎞⎠ (n �= 0), (59)

κ2 =
∑
l �=0

plq−l

1 − pl
ηlη−l , (60)

w2,0 is free, (61)

and so on. In this way, we obtain a series of constraints (52)–(54), etc, besides the relations
giving the nonzero Fourier modes of wks in terms of ηks.

Conjecture 3.12. For k = 1, 2, . . . and nonzero integer n,wk,−n is expressed in terms of ηks
and w1,0, . . . , wk−1,0.

Now we present a conjecture that the constraints (52)–(54) etc can be written as sums of
multiple integrals whose kernel is simply given by products of theta functions with the period
δ:

ϑ1(x; δ) = −ip1/8 eπ ix
∑
n∈Z

(−1)npn(n+1)/2 e2π inx

= ip1/8 e−π ix
∏
n�1

(1 − pn−1 e2π ix)(1 − pn e−2π ix)(1 − pn). (62)

Note that we have ϑ ′
1 = ϑ ′

1(0) = 2πp1/8 ∏
n�1(1 − pn)3 and ϑ1(−x) = −ϑ(x).

9



J. Phys. A: Math. Theor. 42 (2009) 404018 J Shiraishi and Y Tutiya

Definition 3.13. We define the quantities In (n = 1, 2, . . .) by the multiple integral

In = (−1)n−1 1

n!

(ϑ ′
1)

n−1ϑ1(nγ )

(2π i)n−1ϑ1(γ )n

∫ 1/2

−1/2
· · ·

∫ 1/2

−1/2
dx1 · · · dxn

×
∏

1�i<j�n

ϑ1(xi − xj )
2

ϑ1(xi − xj + γ )ϑ1(xi − xj − γ )
· η(x1) · · · η(xn), (63)

where we have used the theta function with the period δ and denoted ϑ1(x) = ϑ1(x; δ) for
short.

Remark 3.14. An explanation is in order here. Similar multiple integrals as in (63) were
found in [7] when one of the authors studied the family of Macdonald difference operators in
terms of the free field construction. In [8], it is found that the algebra found by Feigin and
Odesskii [17] is the underlying algebraic structure for such integrals, including some elliptic
extension of the Macdonald theory. From this point of view, one can regard the integrals (63)
as a certain classical limit of this. Some detail will be given in section 4.

Conjecture 3.15. Let the degree of κk be k. Ins are homogeneous polynomials of degree n
in κks. Namely the quantities Ins are conserved under the time evolution described by the
integro-differential equation (1).

Examples.

I1 = κ1, (64)

I2 = κ2 +
1

2

⎛⎝∑
n�=0

qn − pnq−n

1 − pn

⎞⎠ κ2
1 , (65)

I3 = κ3 +

⎛⎝∑
n�=0

qn − pnq−2n

1 − pn

⎞⎠ κ1κ2

+
1

6

⎛⎝ ∑
m,n�=0

qm − pmq−2m

1 − pm

qn − pnq−n

1 − pn
− 2

∑
n�=0

qn(qn − pnq−2n)

(1 − pn)2

⎞⎠ κ3
1 , (66)

and so on.

3.4. Conserved densities

In this subsection, we continue our study on the structure of the conserved quantities from the
point of view of conserved densities.

First let us study the operator WSkW−1 in some detail. Set

WSkW−1 = Sk +
∞∑
l=1

uk,lS
k−l . (67)

Lemma 3.16. Write ω0 = 1, uk,0 = 1 for simplicity. Then we have
p∑

l=0

uk,lw
(k−l)
p−l = wp. (68)

10
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Hence uk,l can be expressed as the determinant

uk,l =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 1

w
(k)
1 1 w1

w
(k)
2 w

(k−1)
1

. . .
...

...
... 1 wl−1

w
(k)
l w

(k−1)
l−1 · · · w

(1)
1 wl

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (69)

As usual, we write res A = a0 for any A = ∑∞
j=k ajS

−j .

Proposition 3.17. For any positive integer k, uk,k = res(WSkW−1) is a total q-difference.

Proof. For j = 1, 2, 3, . . . , set

ξj =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

w
(j)

1 1 0 · · · 0

w
(j)

2 w
(j−1)

1

. . .
...

...
...

. . .
. . . 0

...
...

. . . 1

w
(j)

j w
(j−1)

j−1 · · · w
(1)
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

and set ξ0 = 1. With this notation we can write the determinant (69) written for l = k as

uk,k = (−1)k
k∑

j=1

(−1)j
(
wjξj − w

(j)

j ξ
(j)

j

)
.

�

Here are some examples of uk,l :

u1,1 = res(WSW−1) = (1 − S)w1, (70)

u2,1 = (1 − S2)w1, (71)

u2,2 = res(WS2W−1) = (1 − S)(w2 + w2 − w1w1), (72)

u3,1 = (1 − S3)w1, (73)

u3,2 = w2 − w2 + w1w1 − w1w1, (74)

u3,3 = res(WS3W−1)

= (1 − S)(w3 + w3 + w3 − w1w2 − w1w2 − w1w2 + w1w1w1), (75)

etc.
Now we can state the structure of the residue of Bk = (Wφ(S)kW−1)+.

Proposition 3.18. For any positive integer n, there exists a difference polynomial Ek of wks
such that res Bn = const + (1 − S)En.

Examples.

res B1 = φ1 + (1 − S)w1, (76)

res B2 = (
φ2

1 + 2φ2
)

+ 2φ1(1 − S)w1 + (1 − S)(w2 + w2 − w1w1), (77)

11



J. Phys. A: Math. Theor. 42 (2009) 404018 J Shiraishi and Y Tutiya

res B3 = (
φ3

1 + 6φ1φ2 + 3φ3
)

+ 3(φ2
1 + φ2)(1 − S)w1 + 3φ1(1 − S)(w2 + w2 − w1w1)

+ (1 − S)(w3 + w3 + w3 − w1w2 − w1w2 − w1w2 + w1w1w1), (78)

and so on.
Now we assume the reduction condition (34).

Lemma 3.19. From the evolution equation ∂tmL = [Bm,L], we have

∂tmη = η · (1 − T S−1)res Bm. (79)

Hence from proposition 3.18, we have

∂tmη = η · (1 − T S−1)(1 − S)Em. (80)

Suppose that Ems are holomorphic on D and periodic Em(x + 1) = Em. Then from
corollary 2.2 and (80) we have some quantity Hm which satisfies ∂tmη = η · T(Hm). We have
a conjecture which explicitly gives Hm.

Definition 3.20. We define the densities Hn(x) (n = 1, 2, . . .) by the n − 1-fold multiple
integral

Hn(x1) = (−1)n−1 1

(n − 1)!

(ϑ ′
1)

n−1ϑ1(nγ )

(2πi)n−1ϑ1(γ )n

∫ 1/2

−1/2
· · ·

∫ 1/2

−1/2
dx2 · · · dxn

×
∏

1�i<j�n

ϑ1(xi − xj )
2

ϑ1(xi − xj + γ )ϑ1(xi − xj − γ )
· η(x1) · · · η(xn), (81)

namely we have nIn = ∫ 1/2
−1/2 dxHn(x).

Conjecture 3.21. By suitably choosing the constants φks and c, we have the equality
Hm = Em − Êm + c, namely we have

∂tmη = η · T(Hm). (82)

We show some examples. First, we have E1 = ω1, and H1 = w1 − ŵ1 + c. By choosing
the constant as c = κ1 we have H1 = η. Second, we have E2 = w2 + w2 − w1w1 + 2φ1w1.
Thus choosing the constants as

c = 2κ2 − κ1(κ1 − 2φ1), (83)

2φ1 = κ1

⎛⎝1 +
∑
n�=0

qn − pnq−n

1 − pn

⎞⎠ , (84)

we have

E2 − Ê2 + c = −(w1 − ŵ1 + κ1)(w1 − ŵ1 + κ1 − 2φ1) = H2. (85)

12
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4. Poisson structure

In this section, we study a Poisson structure which is obtained as a certain deformation of
the algebra associated with the family of Macdonald difference operators Dr

n(q, t) (see (3.4)r
in VI.3 of [6]), and study the relations with the integro-differential equation (1) and the Lax
formulation which we have developed in the previous section.

One of the authors studied [7] the family of Macdonald operators in terms of a Heisenberg
algebra and its Fock representation (namely in the case of infinitely many variables x1, x2, . . .).
In [8], a systematic description of the relation between this and the algebra obtained by Feigin
and Odesskii [17] is given (whose trigonometric limit is very precise). In other words, we
analyzed the commuting family of operators introduced by Macdonald from the point of view
of a pairing between the two kinds of quantum, i.e. noncommutative algebras.

Once we note that the algebra of Feigin and Odesskii is originally constructed over an
elliptic curve (which contains three parameters in this most general setting) one may easily
find the corresponding elliptic deformation of the commutative family which is acting on the
Fock space containing three parameters, say q, t and p.

It is interesting to note that these underlying algebras, the Heisenberg algebra and the
Feigin–Odesskii algebra, become commutative in the limit t → 1 with q and p fixed. Hence
by setting t = eh̄ and considering the limit h̄ → 0, one may naturally define Poisson algebras
on the corresponding commutative algebras.

Because we lack the space, we skip the derivation and just give the resulting Poisson
algebra, then compare the relations with those coming from the Lax formalism. We again use
the notations q = e2π iγ , p = e2π iδ for simplicity of display. The Poisson algebra we study is
generated by {λn|n ∈ Z \ {0}} with the Poisson bracket

{λn, λm} = (1 − qn)(1 − pnq−n)

1 − pn
δn+m,0, (86)

where δm,n denotes the Kronecker delta. Let ε be a constant and set

η(x) =
∑
n∈Z

ηn e−2π inx = ε exp

⎛⎝∑
n�=0

λn e−2π inx

⎞⎠ . (87)

Proposition 4.1. We have

{η(x), η(y)} =
∑
n�=0

(1 − qn)(1 − pnq−n)

1 − pn
e−2π in(x−y)η(x)η(y). (88)

Let us define In and Hn(x) by the same equation (63) in definition 3.13 and (81) in
definition 3.20 respectively from the quantity defined by (87). Here is a crucial remark: we
are not working with the dependent variables described by the Lax formalism, but we are
starting from the Poisson algebra and trying to reconstruct the same hierarchy described by the
Lax operator L together with the reduction condition (34). First, one can prove the following.

Proposition 4.2. For any positive integers k and l, we have

{Ik, Il} = 0. (89)

Let In be our nth Hamiltonian, and set ∂η/∂tn = {In, η(x)}.
Proposition 4.3. We have ∂η/∂tn = {In, η(x)} = η(x)T(Hn).

13
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For example, we have

∂

∂t1
η(x) = {η0, η(x)} = η(x)

∑
n�=0

(1 − qn)(1 − pnq−n)

1 − pn
η−n e2π inx. (90)

The rhs is nothing but η(Tη), hence we recover the integro-differential equation (1). Note that
the time evolution in general takes the same form as we conjecture for the Lax formulation
(see conjecture 3.21).

We note that τ also can be presented as a kind of vertex operator. Set

τ(x) = exp

⎛⎝−
∑
n�=0

pn

(1 − qn)(1 − pnq−n)
λn e−2π inx

⎞⎠ . (91)

Then from (87) we have

η(x) = ε
τ̂ τ

τ̂ τ
. (92)

We have

{η(x), τ (y)} = −
∑
n�=0

1

1 − pn
e−2π in(x−y)η(x)τ (y). (93)

From this we have

{η(x), τ (y + δ)}/τ(y + δ) − {η(x), τ (y)}/τ(y) = (δ(y − x) − 1)η(x), (94)

where we have used the notation δ(x) = ∑
n e2π inx . This gives us

D1τ̂ · τ = ετ̂ τ − η0τ̂ τ, (95)

which is exactly the bilinear equation (8).

Appendix. Weierstrass ζ function

The Weierstrass ζ function ζ(z) = ζ(z; 2ω1, 2ω2) is defined by

ζ(z) = 1

z
+

∑
m,n

′
{

1

z − 2mω1 − 2nω2
+

1

2mω1 + 2nω2
+

z

(2mω1 + 2nω2)2

}
, (A.1)

where the symbol
∑′

m,n means the summation over (m, n) ∈ Z2 \ {(0, 0)}. We have

ζ(−z) = −ζ(z),

ζ(z + 2ω1) = ζ(z) + 2ζ(ω1),

ζ(z + 2ω2) = ζ(z) + 2ζ(ω2),

and the Fourier expansion

ζ(u) = ζ(ω1)

ω1
u +

π

2ω1
cot

πu

2ω1
+

2π

ω1

∞∑
n=1

pn

1 − pn
sin

πnu

ω1
, (A.2)

where p = e2π iω2/ω1 .
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